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A Rectangular Fin Optimization Including Comparison
Between 1-D and 2-D Analyses

Hyung-Suk Kang*
Division of Mechanical and Mechatronics Engineering, Kangwon National University,
Hyoza-dong, Chunchon, Kangwon-do 200-701, Korea

Both 1-D and 2-D analytic methods are used for a rectangular fin optimization. Optimum
heat loss is taken as 98% of the maximum heat loss. Temperature profile using 2-D analytic
method and relative error of temperature along the fin length between 1-D and 2-D analytic
methods are presented. Increasing rate of the optimum heat loss with the variation of Biot
number and decreasing rate of that with the variation of the fin base length are listed. Optimum
fin tip length using 2-D analytic method and relative error of that between 1-D and 2-D
analytic methods are presented as a function of Biot numbers ratio.
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Nomenclature x . Dimensionless length directional variable,

Bi : Fin top and bottom Biot number, (% ") /k X/l

Bi. : Fin tip Biot number, (%.l)/k vy’ . Height directional variable [m]

h  : Fin top and bottom heat transfer coefficient  y : Dimensionless height directional variable,
[W/m?C] v/

he : Fin tip heat transfer coefficient [W/m? C]

k. Thermal conductivity of fin material [W/
m C]

I’ . One half fin base height [m]

L’ : Fin base length [m]

L, : Dimensionless fin base length, L%/’

% . Fin tip length [m]

Greek symbol

B ! Ratio of Biot numbers, Bi./B1

6 : Dimensionless temperature,
(T—T-)/(T:— Tx)

An . Eigenvalues (n=1,2,3, ")

@; . Adjusted temperature of inside wall ['C],

T:— T

L. : Dimensionless fin tip length, L.//’ ( )
. Heat loss per unit width [W/m] Subscript . . _
. Dimensionless heat loss, g/ (ko:) I * One-dimensional analysis

2 ! Two-dimensional analysis
b ! Fin base
e . Fin tip

q

9]

T ' Fin temperature [C]

T» : Fin base temperature [C]

T:  Temperature of inside wall [C]

T . Ambient temperature [C] i Inside wall

x’ © Length directional variable [m] > ! Surrounding

Superscript

f3

. Dimensional quantity

£ . .
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1. Introduction
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fluid in many engineering applications such as
the cooling of combustion engines, many kinds of
heat exchangers, air craft and so on. Optimization
procedures of various shapes of fins have been
studied. For a given heat dissipation rate, the geo-
metric shape that minimizes the material volume
could be found. For this kind of optimization,
Hrymak et al.(1985) presented an efficient nu-
merical method to discover the optimal shape for
a fin subject to both convective and radiating
heat loss. One of the alternative ways is to fix a
suitable simple profile, and then to determine the
dimensions of fin to yield the maximum heat dis-
sipation for a given fin volume or mass. For ex-
ample, Ullmann and Kalman (1989) considered a
problem of increasing the heat dissipation of annu-
lar fins (four different cross-section shapes) at a
defined magnitude of mass. Chung et al.(1989)
dealt with the optimum design of convective longi-
tudinal fins of a trapezoidal profile. Yeh (1996)
determines the optimum dimensions of a one-di-
mensional longitudinal rectangular fin and a cy-
lindrical pin fin. Kang and Chung (2003) analyze
and optimize a design for a rectangular profile an-
nular fin. Casarosa and Franco (2001) investi-
gated the optimum design of single longitudinal
fins with constant thickness by means of an accu-
rate mathematical method yielding the solution of
constrained minimization (maximization) prob-
lems considering different uniform heat transfer
coefficients on the fin faces and on the tip. Also
Razelos and Satyaprakash (1993) present an analy-
sis of trapezoidal profile longitudinal fins that
delineates their thermal performance and an im-
proved solution of the optimal problem. Another
alternative way is to fix a fin height and to choose
the 98% of the maximum heat loss as the opti-
mum heat loss. For this optimum procedure, Kang
(2001) showed the optimum heat loss from a
thermally asymmetric rectangular fin using three-
dimensional analysis. Recently, Kang and Look
(2004) present the optimum heat loss and dimen-
sions for a thermally and geometrically asymme-
tric trapezoidal fin.

In all these papers, fin base temperature is given
as constant for the boundary condition and the
effect of base thickness is not considered. In this

Hyung-Suk Kang

study, for a straight rectangular fin, inside wall
temperature is given and the effect of the fin base
thickness is shown. The fin height is fixed and the
optimum heat loss is taken as 98% of the maxi-
mum heat loss for given conditions. For this opti-
mum criterion (Kang, 2001 ; Kang and Look,
2004), the optimum heat loss and dimensions are
analyzed and the relative errors of the optimum
values between 1-D and 2-D analyses are pre-
sented.

2. Analytical Methods

2.1 1-D Analysis

One-dimensional energy balance equation un-
der steady state for a rectangular fin shown in
Fig. 1 is given as a dimensionless form by Eq. (1).

d*6
dx?

—Bi-6=0 (1)

Two boundary conditions are required to solve
the Eq. (1) and these conditions are shown as
Egs. (2) and

_ db |

dx x:Lb:L—b(l_61|x=Lb) (2)
del " —
dx x:Le+Bze O | x=1,=0 (3)

The solution for the dimensionless temperature
distribution @ (x) within the rectangular fin is
written in Eq. (4).

—

Fig. 1 Geometry of a rectangular fin
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6(x) =% (4)

where
filx)=yBi -cosh{/Bi +(Le—x)} (5)
gi(x) =Bi.-sinh {VB7 + (L.—x)} (6)
A=(Ly*Bi.+1) +/Bi *cosh{/Bi+(Le—Ls)} (7)
B=(Ly*Bi+Bi,) -sinh { /Bi - (L.—Ls)} (8)

By applying Eq. (4) to Fourier’s law, the heat loss
per unit width conducted into the fin through the
fin base is calculated by

dT

dx’ |x=r

an=k-Ax) (9)

Then dimensionless heat loss is given by

Q — {75 — C+D
! k'(Oi A+B

(10)

where
C=Bi-sinh{/B7 - (L.—L5)} (11)
D=Bi.*/Bi ‘cosh{/Bi - (L.—L,)} (12)

2.2 2-D Analysis
Dimensionless two-dimensional governing dif-
ferential equation under steady state for a rectan-
gular fin shown in Fig. [ is
6, &b

o + 0 =0 (13)

Four boundary conditions are required to solve
the Eq. (13). These boundary conditions are shown
as Eqgs. (14) ~ (17).

_% = le (1= G| xe,) (14)
?T% s (15)

% v, Biet Goler, =0 (16)
% y=1—|-Bz'-62|y:1:0 (17)

The solution for the temperature distribution
6 (x,v) within the rectangular fin obtained using

separation of variables method with Egs. (13) ~
(16) is

6 (x.y) :gl A"'fzgf,>+'cé:)f (Any) (18)
where
_ 4sin(A)
An= 7 Fsin (2 (19)

Bn=cosh(ALs) —Ly*Ax+sinh(A.L,)  (20)
Cn:fn'{su‘lh(Aan) _Lb'/in'COSh</1an>} <2l>

_ /171 'tal’lh (/}nLe) +Bl'e
/171 +Bl.e 'tarlh (/LzLe)

F2(x) =cosh (Awx) + fr-sinh (Ax) (23)

fn: (22>

The eigenvalues A can be obtained from Eq. (24),
which comes from Eq. (17).

An-tan(A,) =Bi (24)

The heat loss per unit width conducted into the
fin through the fin base using 2-D analysis is
calculated by

_ [f_pdT
qZ_-/_l’ k axr

Dimensionless heat loss is written as

ay’ (25)

X'=Ly’

8Dn 'Sinz (/1”)

S N
QZ_ 3 2 Bn+Cn

k. (] n=1 <26>

where

D,=sinh(A,Ls) + fn*cosh(A.Ls) (27)
3. Results and Discussions

Figure 2 represents the variation of the temper-
ature along the fin center-line (base to tip) for
Ly,=1 and L,=4 in the case of B7=0.01, 0.05
and 0.1 using 2-D analytic method. It is shown
that the temperature at the fin base decreases
and the temperature along the fin center-line
decreases more rapidly as fin top and bottom Biot
number increases.

Relative error of the temperature along the fin
length between 1-D and 2-D analyses under the
same condition as given in Fig. 2 is shown in Fig.
3. Relative error increases rapidly first and then
increases slowly as x increases. It shows that the
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Fig. 2 Temperature profile along the fin length
(=1, L,=0.1, L.=4)

32T ———
¥ 28 o~ Bi=01
§ 24 "
[ . g
"h-; 20 /-./
& s
= 161 7 Bi = 0.05
To12f / i —
T o8/
2 oall
& 04| Bi=0.01
0.0 bk

0.0 05 1.0 156 2.0 25 3.0 3.5 4.0
X

Fig. 3 Relative error of temperature between 1-D
and 2-D analyses (8=1, L,=0.1, L.=4)

relative error reaches to 3.1% for Bi=0.1 while
that is within 0.2% in the case of B7=0.01 at the
fin tip.

Figure 4 presents the variation of the tempera-
ture along the fin height at the fin tip for several
values of 3. As expected, the temperature at the
center is the highest and it decreases along the
top and bottom directions symmetrically. From
this figure, it can be guessed that the temperature
at the fin tip decreases rapidly first and then de-
creases slowly as f increases in this relatively
short fin case.

Figure 5 represents the heat loss versus the fin
tip length for several values of S3. Heat loss in-
creases rapidly first and then increases slowly as
the fin tip length increases. It also shows that
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Fig. 4 Temperature profile along the fin height
(Bi=0.1, L,=0.1, L.=4)
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Fig. 5 Heat loss versus the fin tip length
(Bi=0.1, L,=0.1)

heat loss increases as 3 increases at the same fin
tip length and the effect of 8 on the heat loss
becomes smaller as the fin tip length increases.
This figure implies that there is no effect of /8
on the optimum heat loss if the fin tip length for
the optimum heat loss is long enough to eliminate
the effect of fin tip heat transfer coefficient.

Table 1 lists the relative error of the optimum
heat loss between 1-D and 2-D analyses for all 8
and L,=0.1. The condition ‘for all 8> means that
/8 has no effect on the optimum heat loss. It can
be known that the relative error increases from
0.02% to 1.45% as Bi increases from 0.001 to
0.1 and the optimum heat loss calculated using
1-D analysis is greater than that calculated using
2-D analysis.
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Table 1 Relative error of the optimum heat loss be-
tween 1-D and 2-D analyses (all 8, L,=
0.1)

Bi 0.001 0.01 0.1

(QF—QF/QF (%) | —0.02% | —0.16% | —1.45%

Table 2 Increasing rate of the optimum heat loss
(all B, L,=0.1)
Bi LR. of @ (%)
0.01 — 0.03 71.44
0.03 — 0.05 28.09
0.05— 0.1 39.19
0.1—0.15 20.85

Increasing rate of the optimum heat loss ob-
tained by using 2-D analysis for all A and L,=
0.1 is listed in Table 2. As already mentioned in
Table 1, 8 has no effect on the optimum heat loss.
It is noted that increasing rate of the optimum
heat loss decreases as B increases. It means that
the optimum heat loss increases rapidly first and
then increases slowly with the increase of Bj.

Figure 6 shows the optimum fin tip length as a
function of B for several values of /8 in the case
of L,=0.1. For all B3, the optimum fin tip length
decreases somewhat rapidly first and then de-
creases slowly as Bi increases. Even though A3
has no effect on the optimum heat loss, the opti-
mum fin tip length decreases as S increases for
the same value of Bz. This phenomenon explains
physically that the optimum heat loss is obtained
at shorter fin tip length as fin tip heat transfer
coefficient increases.

Figure 7 represents the relative error of the op-
timum fin tip length between 1-D and 2-D an-
alyses as a function of 3. For all given five fin top
and bottom Biot numbers, the relative error varies
from relatively large value to smaller value as 3
increases from 0 to 1.8. The range of relative error
becomes wide as Bj7 increases, for example, the
relative error in the case of B7=0.03 decreases
from 0.49% to 0.40% while that for Bi=0.2 de-
creases from 3.1% to —4.1% as 8 increases from 0
to 1.8. For given range of £, the relative error
seems to be tolerated until B7=0.1.

Table 3 lists decreasing rate of the optimum
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Fig. 6 Optimum fin tip length versus Bi (L,=0.1)
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Fig. 7 Relative error of the optimum fin tip length
between 1-D and 2-D analyses (L,=0.1)

Table 3 Decreasing rate of the optimum heat loss

(all B, Bi=0.1)

L, D.R. of @ (%)
0.1—0.2 2.96
02—0.3 2.86
03— 0.4 2.78

heat loss for all B and Bz=0.1 with the increase
of the fin base length. It is noted that the opti-
mum heat loss decreases as the fin base length in-
creases. It is because that the resistance between
the inside wall and the fin base increases as the
fin base length increases. It also shows that the
decreasing rate of the optimum heat loss becomes
smaller as the fin base length increases.

The optimum fin tip length for B7=0.1 is re-
presented as a function of A in Fig. 8. It shows
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Fig. 8 The optimum fin tip length versus
B (Bi=0.1)

that the optimum fin tip length decreases mono-
tonically as S increases. It also indicates that the
optimum fin tip length increases as the fin base
length increases for a fixed value of [. It must
be noted that the actual optimum fin length de-
creases with the increase of the fin base length
since the fin length is the difference between the
fin tip length and the fin base length.

4. Conclusions

The following conclusions can be drawn from
the results.

(1) Under usual circumstances (i.e. B:<0.1),
relative errors of the optimum heat loss and fin tip
length between 1-D and 2-D analyses are within
1.6% for given range of other variables.

(2) The optimum heat loss increases while the
optimum fin tip length decreases as fin top and
bottom Biot number increases.

(3) The actual optimum fin length decreases
even though the optimum fin tip length increases
with the increase of the fin base length.

(4) The optimum fin tip length decreases re-
markably as /A decreases even though the opti-
mum heat loss is independent on the variation

of S.

Hyung-Suk Kang

References

Casarosa, C. and Franco, A., 2001, “On the
Optimum Thermal Design of Individual Longitu-
dinal Fins with Rectangular Profile,” Heat Trans-
fer Engineering, Vol. 22, No. 1, pp. 51~71.

Chung, B. T. F., Abdalla, M. H. and Liu, F.,
1989, “Optimization of Convective Longitudinal
Fins of Trapezoidal Profile,” Chem. Eng. Com-
m., Vol. 80, pp. 211~223.

Hrymak, A. N., McRae, G.J. and Westerberg,
A. W., 1985, “Combined Analysis and Optimiza-
tion of Extended Heat Transfer Surfaces,” ASME
J. of Heat Transfer, Vol. 107, No. 3, pp. 527~
532.

Kang, H. S. and Chung, B. T. F., 2003, “Two-
Dimensional Analytical Solutions for Optimiza-
tion of Convective Annular Fin of Rectangular
Profile,” 2003 ASME International Mechanical
Engineering Congress & Exposition, Washington,
DC, IMECE2003-41508, Nov. 15-21.

Kang, H. S. and Look, D. C. Jr., 2004, “Opti-
mization of Thermally and Geometrically Asym-
metric Trapezoidal Fins,” AIAA J. of Thermo-
physics and Heat Transfer, Vol. 18, No. 1, pp. 52~
57.

Kang, H. S., 2001, “Optimization of a 3-D Ther-
mally Asymmetric Rectangular Fin,” KSME In-
ternational Journal, Vol. 15, No. 11, pp. 1541~
1547.

Razelos, P. and Satyaprakash, B. R., 1993, “Anal-
ysis and Optimization of Convective Trapezoid-
al Profile Longitudinal Fins,” ASME J. of Heat
Transfer, Vol. 115, No. 2, pp. 461 ~463.

Ullmann, A. and Kalman, H., 1989, “Efficiency
and Optimized Dimensions of Annular Fins of
Different Cross—Section Shapes,” Int. J. of Heat
and Mass Transfer, Vol. 32, pp. 1105~1110.

Yeh, R. H., 1996,
Fin Optimization Problem for Convective Heat
Transfer,” Int. J. of Heat and Mass Transfer,
Vol. 39, No. 14, pp. 3075~3078.

“Errors in One-Dimensional



	A Rectangular Fin Optimization Including Comparison Between 1-D and 2-D Analyses
	1. Introduction
	2. Analytical Methods
	3. Results and Discussions
	4. Conclusions
	References


